algebraic specification - significado y definición. Qué es algebraic specification
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es algebraic specification - definición


Algebraic specification         
Algebraic specification is a software engineering technique for formally specifying system behavior. It was a very active subject of computer science research around 1980.
Algebraic extension         
FIELD EXTENSION VIA ADJOINING SOLUTIONS TO POLYNOMIALS WITH COEFFICIENTS IN THE SUBFIELD
Algebraic extension of a field; Algebraic field extension; Relative algebraic closure; Algebraic extension field
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in .Fraleigh (2014), Definition 31.
Derived algebraic geometry         
BRANCH OF MATHEMATICS GENERALIZING ALGEBRAIC GEOMETRY SO THAT COMMUTATIVE RINGS PROVIDING LOCAL CHARTS ARE REPLACED BY SIMPLICIAL COMMUTATIVE RINGS OR E∞-RING SPECTRA, WHOSE HIGHER HOMOTOPY GROUPS ACCOUNT FOR NON-DISCRETENESS OF THE STRUCTURE SHEAF
Homotopical algebraic geometry; Spectral algebraic geometry
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over \mathbb{Q}), simplicial commutative rings or E_{\infty}-ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g.